Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38399990

ABSTRACT

Several countries have been using Wolbachia deployments to replace highly competent native Aedes aegypti populations with Wolbachia-carrying mosquitoes with lower susceptibility to arboviruses such as dengue, Zika, and chikungunya. In Rio de Janeiro, Wolbachia deployments started in 2015 and still present a moderate introgression with a modest reduction in dengue cases in humans (38%). Here, we evaluated the vector competence of wild-type and wMel-infected Ae. aegypti with a Brazilian genetic background to investigate whether virus leakage could contribute to the observed outcomes in Brazil. We collected the specimens in three areas of Rio de Janeiro with distinct frequencies of mosquitoes with wMel strain and two areas with wild Ae. aegypti. The mosquitoes were orally exposed to two titers of DENV-1 and the saliva of DENV-1-infected Ae. aegypti was microinjected into wMel-free mosquitoes to check their infectivity. When infected with the high DENV-1 titer, the presence of wMel did not avoid viral infection in mosquitoes' bodies and saliva but DENV-1-infected wMel mosquitoes produced lower viral loads than wMel-free mosquitoes. On the other hand, wMel mosquitoes infected with the low DENV-1 titer were less susceptible to virus infection than wMel-free mosquitoes, although once infected, wMel and wMel-free mosquitoes exhibited similar viral loads in the body and the saliva. Our results showed viral leakage in 60% of the saliva of wMel mosquitoes with Brazilian background; thus, sustained surveillance is imperative to monitor the presence of other circulating DENV-1 strains capable of overcoming the Wolbachia blocking phenotype, enabling timely implementation of action plans.


Subject(s)
Aedes , Dengue Virus , Dengue , Wolbachia , Zika Virus Infection , Zika Virus , Animals , Humans , Dengue Virus/genetics , Brazil , Mosquito Vectors , Wolbachia/genetics
2.
Viruses ; 15(4)2023 04 12.
Article in English | MEDLINE | ID: mdl-37112932

ABSTRACT

(1) Background: The deployment of the bacterium Wolbachia to reduce arbovirus transmission is ongoing in several countries worldwide. When Wolbachia-carrying Aedes aegypti are released and established in the field, females may feed on dengue-infected hosts. The effects of simultaneous exposure on life-history traits of Ae. aegypti to Wolbachia wMel strain and dengue-1 virus DENV-1 remain unclear. (2) Methods: We monitored 4 groups (mosquitoes with either DENV-1 or Wolbachia, coinfected with DENV-1 and Wolbachia, as well as negative controls) to estimate Ae. aegypti survival, oviposition success, fecundity, collapsing and fertility of quiescent eggs for 12 weeks. (3) Results: Neither DENV-1 nor Wolbachia had a significant impact on mosquito survival nor on mosquito fecundity, although the last parameter showed a tendency to decrease with ageing. There was a significant decrease in oviposition success in individuals carrying Wolbachia. Wolbachia infection and storage time significantly increased egg collapse parameter on the egg viability assay, while DENV-1 had a slight protective effect on the first four weeks of storage. (4) Conclusions: Despite limitations, our results contribute to better understanding of the tripartite interaction of virus, bacteria and mosquito that may take place in field conditions and aid in guaranteeing the Wolbachia strategy success.


Subject(s)
Aedes , Dengue Virus , Dengue , Wolbachia , Humans , Animals , Female , Fertility
3.
Biomed Res Int ; 2018: 6257860, 2018.
Article in English | MEDLINE | ID: mdl-30402487

ABSTRACT

BACKGROUND: Chemical control is still a major strategy to constrain vector density and mitigate pathogen transmission. However, insecticide overuse poses a high selective pressure, favouring the spread of resistance alleles in natural populations. In an insecticide-free environment, a fitness cost is expected in resistant insects when compared to susceptible counterparts. This study investigates whether insecticide resistance to an organophosphate (temephos) and a pyrethroid (deltamethrin) is associated with fitness traits in four Aedes aegypti wild populations sampled every three months over one year. FINDINGS: We measured development time from larvae to adult, female survival, wing length, fecundity, and adult resistance to starvation in field insecticide resistant Ae. aegypti populations four times over a year. These results were confronted with resistance levels to temephos and deltamethrin and with potentially related mechanisms, including a kdr mutation in the pyrethroid target site. No differences in fitness cost were found after contrasting mosquitoes from the same population collected throughout a year, irrespective of differences in insecticide resistance levels. Additionally, significant differences were not observed among field populations. However, compared to the reference strain Rockefeller, field females survived significantly less. Moreover, larval development was equal or slower in three out of four field populations. In no case differences were evidenced in starvation tolerance, wing length, and fecundity. CONCLUSIONS: Overall, field resistant mosquitoes seemed to have a slight fitness disadvantage when compared with the Rockefeller susceptible strain which might represent a potential fitness cost of insecticide resistance. However, after comparing Ae. aegypti from the same population but sampled at different moments, or from different field populations, mosquito life-history traits varied independently of resistance ratios. The metabolic deviations necessary to overcome the adverse effects of insecticides may cause an energy trade-off that affects energy allocation and ultimately basic demands of insect biology. The extent of fitness cost due to insecticide resistance is critical information to delay the evolution of resistance in wild vector populations.


Subject(s)
Aedes/genetics , Genetic Fitness , Insecticide Resistance/genetics , Aedes/drug effects , Animals , Brazil , Female , Fertility/drug effects , Insecticide Resistance/drug effects , Nitriles/toxicity , Pyrethrins/toxicity , Survival Analysis , Temefos/toxicity
4.
PLoS Negl Trop Dis ; 12(9): e0006692, 2018 09.
Article in English | MEDLINE | ID: mdl-30208017

ABSTRACT

BACKGROUND: Aedes-borne arboviruses have emerged as an important public health problem worldwide and, in Mozambique, the number of cases and its geographical spread have been growing. However, information on the occurrence, distribution and ecology of Aedes aegypti and Ae. albopictus mosquitoes remain poorly known in the country. METHODS: Between March and April 2016, a cross-sectional study was conducted in 32 districts in Mozambique to determine the distribution and breeding sites of Ae. aegypti and Ae. albopictus. Larvae and pupae were collected from a total of 2,807 water-holding containers using pipette, dipper, funnel and sweeping procedures, depending on the container type and location. Both outdoor and indoor water-holding containers were inspected. The immature forms were reared to adults and the identifications of the mosquito species was carried out with a stereomicroscope using a taxonomic key. RESULTS: Aedes aegypti was found in every district sampled, while Ae. albopictus was only found in Moatize district, situated in Tete Province in the central part of the country. Six hundred and twenty-eight of 2,807 (22.4%) containers were positive for Ae. aegypti but only one (0.03%) was positive for Ae. albopictus. The Container Index (CI) of Aedes was highest in densely populated suburban areas of the central region (260/604; 43.0%), followed by suburban areas in northern areas (228/617; 36.9%) whilst the lowest proportion was found in urbanized southern areas (140/1586; 8.8%). The highest CI of Aedes was found in used tires (448/1268; 35.3%), cement tanks (20/62; 32.3%) and drums (21/95; 22.1%). CONCLUSION: Data from our study showed that Ae. aegypti is present nation-wide, since it occurred in every sampled district, whilst Ae. albopictus had a limited distribution. Therefore, the risk of transmission of dengue and chikungunya is likely to have been underestimated in Mozambique. This study highlights the need for the establishment of a national entomological surveillance program for Aedes spp. in Mozambique in order to gain a better understanding about vector bionomics and to support the development of informed effective vector control strategies.


Subject(s)
Aedes/classification , Aedes/growth & development , Arbovirus Infections/epidemiology , Disease Outbreaks , Ecosystem , Mosquito Vectors/classification , Mosquito Vectors/growth & development , Animals , Cities , Cross-Sectional Studies , Disease Transmission, Infectious , Humans , Mozambique/epidemiology
5.
Front Microbiol ; 9: 3011, 2018.
Article in English | MEDLINE | ID: mdl-30619118

ABSTRACT

A Zika virus (ZIKV) pandemic started soon after the first autochthonous cases in Latin America. Although Aedes aegypti is pointed as the primary vector in Latin America, little is known about the fitness cost due to ZIKV infection. We investigated the effects of ZIKV infection on the life-history traits of Ae. aegypti females collected in three districts of Rio de Janeiro, Brazil (Barra, Deodoro, and Porto), equidistant ~25 km each other. Aedes aegypti mosquitoes were classified into infected (a single oral challenge with ZIKV) and superinfected (two ZIKV-infected blood meals spaced by 7 days each other). ZIKV infection reduced Ae. aegypti survival in two of the three populations tested, and superinfection produced a sharper increase in mortality in one of those populations. We hypothesized higher mortality with the presence of more ZIKV copies in Ae. aegypti females from Porto. The number of eggs laid per clutch was statistically similar between vector populations and infected and uninfected mosquitoes. Infection by ZIKV not affected female oviposition success. ZIKV infection impacted Ae. aegypti vectorial capacity by reducing its lifespan, although female fecundity remained unaltered. The outcome of these findings to disease transmission intensity still needs further evaluation.

6.
Parasit Vectors ; 7: 25, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24428880

ABSTRACT

BACKGROUND: The chemical control of the mosquito Aedes aegypti, the major vector of dengue, is being seriously threatened due to the development of pyrethroid resistance. Substitutions in the 1016 and 1534 sites of the voltage gated sodium channel (AaNaV), commonly known as kdr mutations, confer the mosquito with knockdown resistance. Our aim was to evaluate the allelic composition of natural populations of Brazilian Ae. aegypti at both kdr sites. METHODS: The AaNaV IIIS6 region was cloned and sequenced from three Brazilian populations. Additionally, individual mosquitoes from 30 populations throughout the country were genotyped for 1016 and 1534 sites, based in allele-specific PCR. For individual genotypes both sites were considered as a single locus. RESULTS: The 350 bp sequence spanning the IIIS6 region of the AaNaV gene revealed the occurrence of the kdr mutation Phe1534Cys in Brazil. Concerning the individual genotyping, beyond the susceptible wild-type (NaVS), two kdr alleles were identified: substitutions restricted to the 1534 position (NaVR1) or simultaneous substitutions in both 1016 and 1534 sites (NaVR2). A clear regional distribution pattern of these alleles was observed. The NaVR1kdr allele occurred in all localities, while NaVR2 was more frequent in the Central and Southeastern localities. Locations that were sampled multiple times in the course of a decade revealed an increase in frequency of the kdr mutations, mainly the double mutant allele NaVR2. Recent samples also indicate that NaVR2 is spreading towards the Northern region. CONCLUSIONS: We have found that in addition to the previously reported Val1016Ile kdr mutation, the Phe1534Cys mutation also occurs in Brazil. Allelic composition at both sites was important to elucidate the actual distribution of kdr mutations throughout the country. Studies to determine gene flow and the fitness costs of these kdr alleles are underway and will be important to better understand the dynamics of Ae. aegypti pyrethroid resistance.


Subject(s)
Aedes/genetics , Amino Acid Substitution , Insect Proteins/genetics , Mutation , Alleles , Animals , Brazil , Genotype , Geography , Population Dynamics , Voltage-Gated Sodium Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...